Three mechanisms by which striatal denervation causes breakdown of dopamine signaling.

نویسنده

  • Jakob K Dreyer
چکیده

Progressive loss of nigrostriatal dopamine (DA) neurons is the neuropathological hallmark of Parkinson's disease (PD). Symptoms of the disease can often be treated by DA D2 agonists and thus seem related to disinhibition of the indirect striatal pathway. However, there is no evidence that symptoms arise by low extracellular DA concentration or are associated with reduced D2 receptor binding. Here I provide a theoretical analysis of the pathophysiology and postsynaptic adaptation resulting from striatal DA denervation. I found that progressive denervation may alter DA signaling by three independent mechanisms depending on degree of denervation and macroscopic morphology of the lesion. As long as the remaining innervation stays anatomically coherent, denervation reduces phasic variations in extracellular DA, but the DA tone is not changed. The reduction of phasic signaling can be partially compensated by upregulating postsynaptic signaling cascades. However, changes in DA dynamics evade compensation. With 80-99% denervation, a persistent aberrant signal develops in D2-regulated pathways caused by random fluctuations in tonic DA release. Permanent low DA levels occur in regions completely void of innervation. Simulation of l-dopa therapy reduced the aberrant D2 signal. With a high degree of denervation, l-dopa enhanced another aberrant signal, this time in the D1 pathway. This analysis provides a quantitative, physiologically consistent view of the early and late stages of PD, the effect of main therapeutic medications, and potential side effects. The mechanisms described here may also provide an explanation to currently inexplicable pathological phenomena such as psycho stimulant-induced contraversive rotations in animal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.

The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...

متن کامل

Unilateral dopamine denervation blocks corticostriatal LTP.

The nigrostriatal dopaminergic projection is crucial for the striatal processing of motor information received from the cortex. Lesion of this pathway in rats causes locomotor alterations that resemble some of the symptoms of Parkinson's disease and significantly alters the excitatory transmission in the striatum. We performed in vitro electrophysiological recordings to study the effects of uni...

متن کامل

6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons.

Destruction of the substantia nigra produces striatal D1 dopamine receptor supersensitivity without increasing receptor number or affinity, thus implicating postreceptor mechanisms. The nature of these mechanisms is unknown. Increased striatal c-fos expression ipsilateral to a unilateral lesion of the substantia nigra in rats treated with appropriate dopamine agonists provides a cellular marker...

متن کامل

Dynamic changes in striatal dopamine D2 and D3 receptor protein and mRNA in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) denervation in baboons.

Loss of nigrostriatal neurons leads to striatal dopamine deficiency and subsequent development of parkinsonism. The effects of this denervation on D2-like receptors in striatum remain unclear. Most studies have demonstrated increases in striatal dopamine D2-like receptors in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated denervation, but others have found either decrea...

متن کامل

Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on Ca V 2.1 channels via PIP2 depletion.

The loss of dopaminergic neurons in the substantia nigra compacta followed by striatal dopamine depletion is a hallmark of Parkinson's disease. After dopamine depletion, dopaminergic D(2) receptor (D(2)R)-class supersensitivity develops in striatal neurons. The supersensitivity results in an enhanced modulation of Ca(2+) currents by D(2)R-class receptors. However, the relative contribution of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 37  شماره 

صفحات  -

تاریخ انتشار 2014